引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 154次   下载  本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于同轴图像传感的激光焊接过程质量监测技术
宫建锋, 李慧知, 李俐群, 王刚
作者单位E-mail
宫建锋, 李慧知, 李俐群, 王刚  350551128@qq.com;wanggang119@hit.edu.cn 
摘要:
针对激光焊接过程中由于参数不匹配、装配误差等原因造成的焊接过程不稳定等焊接缺陷,基于同轴图像传感技术,建立起一套激光焊接过程中的质量在线监测系统,对焊接过程中的熔池图像进行了采集分析及其熔池特征信息的提取. 结果表明,在激光功率为1 500 W的不等厚不锈钢薄板激光焊接试验条件下,焊接过程中的不稳定、下塌缺陷以及焊偏现象与熔池形状各特征信息变化具有一定的相关性. 结合BP神经网络算法对所提特征信息进行分类、识别,基于LabVIEW软件平台,可实现相应缺陷的自动化识别及报警功能.
关键词:  激光焊接|同轴图像传感|质量在线监测|缺陷识别
DOI:10.12073/j.hjxb.2019400008
分类号:
基金项目:
Quality monitoring technology of laser welding process based on coaxial image sensing
GONG Jianfeng, LI Huizhi, LI Liqun, Wang Gang
Abstract:
Aim at the welding defects, such as instability, due to parameter mismatch and assembly error during welding process, an online system for monitoring quality of laser welding was built based on coaxial image sensing technology to collect, which analyzed and extracted the characterisitic information from the welding pool during laser welding process. Results showed that instability, collapse defect and weld misalignment were associated with the characteristic of the welding pool in the condition of laser welding unequal thickness stainless steel sheet with laser power of 1 500 W. Combining BP neural networks algorithm, the monitoring system can realize the automatic identification and alarm function of the corresponding defects based on LabVIEW platform.
Key words:  laser welding|coaxial image sensing|online quality monitoring|defect identification